YDS

Young Defence Scientists Programme (

e
/

3

DSTA

Defence Science &
Technology Agency

Y e e e -

/

ORACLE ATTACK

KEY RECOVERY OF PASSWORD-BASED
°| AES-GCM WITH THE PARTITIONING

Members:

Christian James Tan (NUS High School of
Mathematics and Science)

Xu Jingxin (Anglo-Chinese School (Independent))

Mentors:
Ruth Ng li Yung, Choo Jia Guang
[DSO National Laboratories)

1) BACKGROUND ON AUTHENTICATED ENCRYPTION & COLLISIONS

Authenticated Encryption (Symmetric scheme)

Encryption: ensures confidentiality —

(secrecy) - jumbles PT bytes to CT akin to ‘
random permutation

icitv& i - MAC
MAC: ensures authenticity& integrity - I ‘ gen
that the message has not been illicitly 1 MAC

changed Fig 1.1: Encryption

Encryption —

Encryption (encrypt-then-MAC)

Encrypt PTto CT , s
Generate a MAC of the CT and send it| pecryption ‘ genMAC ‘
with CT
Decryption M;lC" — n;Ac
Authentication: recalculate MAC- I compare—JNNEAINNNN

compare it with received MAC _ |

Decryption fails if they don’t match
Then decrypt CT to get PT

Fig 1.2: Decryption

Key multi-collision * Same CT (and nonce) decrypts
successfully under different keys.

MAC1 MAC1 * Colliding ciphertexts innon-key-
Key 1 Key 2 committing schemes
enMA genMAC
MAC2 MAC2

« Multi-collisions: collidemany keys
Key 3 Key 4 Examples of non-committing schemes
Fig 2: Collisions * GCM (Galois/Counter Mode)

* ChaCha20/Poly1305
» =>MACs are polynomial based

Terms

3) IMPLEMENTATION DETAILS OF ATTACK AR

gibberish)

MAC: message authentication code
genMAC: function that generates it

Scenario description

encrypt | decrypt
A .

- Messaging app
- Encrypt & sends messages using AES-GCM.

- Pre-shared passphraseused as thekeyin GCM

- Processing of ciphertext and MAC (and nonce): u | CTIIMAC
Authentication = decryption = decoding l
- The receiver sends an acknowledgement
T . decrypt
message before exiting program (to confirm il cucceed
reception)
. => We can exploit this as ourdecryption oracle! Acknowledge "y oTPtS
We used a password list of size 100 000 l \
: : : Ack led t
passwords with associated frequency data, and it | ¢ ”;‘:;a%ime” error
takes an average of 11 guesses and a maximum of

17 to recover the key used, with collisions of up to

i 7: di . on fail
20,000 keys (<43ms). Fig 7: differentiating decryption failure/ success

Time complexity of attack

« For polynomial-based MACs e.g. GCM, construction of colliding
ciphertexts is equivalent to polynomial interpolation:

Naive Fast
log () 0(nlog?n)
0(n?) 8
0(n?) = O o o () 0(nlog?n)
i=1 > 0 :
= 0(n?) i1 g
- In fastest case, stillo(n log?n) ~ 0(nlog?n)

2) PARTITIONING ORACLE ATTACK!

Attack target: the Partitioning Oracle

* Decryption oracle

Colliding _ _
ciphertext * |Indicates failure OR success of
£ N decryption.
U/ Some indicators eg error message,
, o Fail/ succeed lack of response, timing side channels
Fig 3: Partitioning Oracle
Attack procedure To leak the key used by a partitioning oracle:

- Compute a colliding ciphertext for a chosen set of
‘colliding’ keys.
- Query oracle and observe decryption status
- |If succeed: oracle’s key is in set of ‘colliding’ keys
- If fail: oracle’s key is not in set (in complement of set).
- Compute next colliding ciphertext and repeat.
- => Attacker ‘partitions’ and narrows down the key space.

- Binary search (ideal) or linear scan in chunks followed
by binary search (nor-ideal)

Fig 4: Binary tree

- Dictionary attack: just try all passwords

from most to least probable? How is this better than dictionary attack?

- Runs in0(n) < 0(nlog?n) = better o5 | atack |
than partitioning? [pertionin /
- No. of queries: /
- Dictionary: 0(n) s ’
- Partitioning Oracle Attack:0(logn) g 02
- Disregarding ciphertext construction, 01 -
partitioning wins! e
- Precompute ciphertexts =Maximum © Y orauenes © M
spee du P Fig 8: Partitioning oracle attack requires fewer queries

4) CONDITIONS, APPLICATIONS & MITIGATIONS

5 Password-derived keys

:) - Some keys are derived from

3 passwords using keyderivation

- functions

1 - Passwords are norruniformly

0 e o e o o distributed - instead, they follow a

Fig 5: Zipfian distribution - rank and frequency in inverse proportion Zlpfian distribution

- To partition the keyset in half (by
probability), the colliding ciphertext
requires fewer than half the keys

- Faster & more feasible
construction of ciphertexts

—

! > o —_— - — >
Fig 6: half the probability with fewer than half the keys.

Condition 1 scheme used is norkey- —
committing Encryption |
- Use committing schemesEg HMAC 2
. Make schemes committing CTX gyt | j
(and nonce ge:r::,qc
Condition 2 Access to partitioning oracle: ﬁ

. , . . . Fig 9: CTX t
- Hide information on decryption failure/ 9 ransform

success Conclusion & further work:This attack
is a viable method of key-recovery due
. _ _ to the speedup it provides when the 3
Condition 3 (optional) Password-derived > SPEEtuUp It provides w

conditions are met, as shown by our

Kkey | example, and can be applied to TLS
- Don't use a pre-shared passphrase (pre-shared key and GCM mode)in

- Use uniformly generated random keys future work.

Acknowledgements References

We sincerely thank our [1] Len, J., Grubbs, P.,Ristenpart, T., 2021, Partitioning Oracle Attacks,
mentors Ruth and Jia ['_-ll“||_]|,E|n.g]I 30th USENIX security symposium (USEN'X Security 21): 195212,
without whom this would [2] Chan, J., Rogaway, P., 2022, On Committing Authenticated-Encryption,
have been impossible. European Symposium on Research in Computer Security: 279294.

